THE AUTOMORPHISM GROUP OF FINITE GRAPHS

G. H. FATH-TABAR DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, UNIVERSITY OF KASHAN, KASHAN 87317-51167, IRAN EMAIL: FATHTABAR@KASHANU.AC.IR

ABSTRACT. Let G = (V, E) be a simple graph with exactly *n* vertices and *m* edges. The aim of this paper is a new method for investigating non-triviality of the automorphism group of graphs. To do this, we prove that if $|E| \ge |(n-1)^2/2|$ then |Aut(G)| > 1 and |Aut(G)| is even number.

Keywords and phrases: Finite graph, graph automorphism, bipartite graph.

2000 Mathematics subject classification: Primary 20D45, Secondary 05C25.

1. INTRODUCTION

Throughout this paper all graphs mentioned are assumed to be finite simple graph. Let G = (V, E) be a graph of order n with vertex set $V(G) = \{v_1, v_2, ..., v_n\}, E \subseteq P_2(V)$ and |E| = m. The automorphism group of a graph G is denoted by Aut(G).

In [2, 3], the authors proved that the proportion of graphs which have a non-trivial automorphism group tends to zero as $n \to \infty$. This is true whether we take labeled or unlabeled graphs. Let G_1, G_2 be two graphs. Then $G_1 + G_2$ is join of G_1 and G_2 namely every vertex of G_1 is join to every vertex of G_2 .

Let G = (V, E) be a graph with n vertices and $x \in V(G)$. We define $V_x = \{t \in V(G) | xt \in E(G)\}$. If $V_x - \{y\} = V_y - \{x\}$ then we call $x, y \in V(G)$ to be co-adjacent.

Theorem 1.1. If G = (V, E) is a finite simple graph with two vertices that are co-adjacent then 2||Aut(G)| and |Aut(G)| > 1.

Received 10 July 2007; Accepted 5 February 2008

^{©2007} Academic Center for Education, Culture and Research TMU.

²⁹

Proof. Let x,y be co-adjacent. Our main proof consider two separate cases:

Case 1. If x, y are not adjacent then $V_x = V_y$. We now define $f : V(G) \rightarrow V(G)$ by f(x) = y, f(y) = x, f(t) = t, for $t \notin \{x, y\}$. Since $V_x = V_y, f$ is an automorphism. One can see that $f \neq$ identity and O(f) = 2. Thus 2||Aut(G)| and |Aut(G)| > 1.

Case 2. Suppose x, y are adjacent. Then $V_x - \{y\} = V_y - \{x\}$ and a similar argument as Case 1 shows that $f: V(G) \to V(G)$ is an isomorphism, where f(x) = y, f(y) = x and f(t) = t, for $t \notin \{x, y\}$. Therefore 2||Aut(G)|, proving the theorem.

Theorem 1.2. Suppose $x_i, y_i, 1 \le i \le k$, are co-adjacent and $\{x_i, y_i\} \cap \{x_j, y_j\} = \phi, i \ne j$, then $2^k ||Aut(G)|$.

Proof. By the proof of Theorem 1, $(x_i, y_i) \in Aut(G)$ and $(x_i, y_i)(x_j, y_j) = (x_j, y_j)(x_i, y_i)$, because $\{x_i, y_i\} \cap \{x_j, y_j\} = \phi$ and $(x_i, y_i), (x_j, y_j)$ are disjoint permutation of order 2. Thus $\langle (x_1, y_1), (x_2, y_2), ..., (x_k, y_k) \rangle = \langle (x_1, y_1) \rangle \times \langle (x_2, y_2) \rangle \times ... \times \langle (x_k, y_k) \rangle$ is a subgroup of Aut(G) and by Lagrange's theorem $O(\langle (x_1, y_1), (x_2, y_2), ..., (x_k, y_k) \rangle) ||Aut(G)|$. Therefore $O(\langle (x_i, y_i), (x_j, y_j) \rangle) = O((x_i, y_i))O((x_j, y_j))$ and hence $2^k ||Aut(G)|$. \Box

Example 1.3. Suppose G = (V, E) in which

$$V = \{1, 2, 3, 4\}, \quad E = \{13, 24, 32, 41, 34\}.$$

Then $\{1,2\} \cap \{3,4\} = \phi$ and so $4 \mid |\operatorname{Aut}(G)|$. Thus $|\operatorname{Aut}(G)| = 4$ and $\operatorname{Aut}(G) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.

Theorem 1.4. Let G be a graph with n vertices. If $|E| \ge \lfloor (n-1)^2/2 \rfloor$ then there exists a co-adjacent pair $(x, y) \in V(G)$.

Proof. Since two vertices with the same degree n - 1 are co-adjacent, so it is enough to assume that G have at most one vertex of degree n - 1. We consider the following two cases.

Case 1. *n* is even. Then $\lfloor (n-1)^2/2 \rfloor = \frac{n(n-2)}{2}$. Since the number of edges in a n-2-regular graph is $\frac{n(n-2)}{2}$, there are at least two co-adjacent vertices of degree n-1, whenever $|E| > \frac{n(n-2)}{2}$. If $|E| = \frac{n(n-2)}{2}$ and G is (n-2)-regular then every two non-adjacent vertices of degree n-2 are co-adjacent. If $|E| = \frac{n(n-2)}{2}$ and G is not (n-2)-regular then there exist $x, y \in V(G)$ such that deg(x) = deg(y) = n-2 and x, y are not adjacent. Thus these are co-adjacent. Otherwise $2|E| \leq (n-2)(n-3) + (n-2) + (n-1) < n(n-2)$, which is a contradiction.

Case 2. Suppose n is odd. Then $|E| = \lfloor (n-1)^2/2 \rfloor = \frac{(n-1)^2}{2}$. If there are two vertices of degree n-1 then they are co-adjacent, otherwise if G dose not have one vertex of degree n-1, then a similar argument as above completes the proof. Suppose there exist one vertex of degree n-1. Then by omitting this

30

vertex G-v has order n-1 and n-1 is even. Since $|E(G-v)| \ge (n-1)(n-3)/2$, a simple argument as Case 1 completes the proof.

Example 1.5. Suppose G = (V, E), where

$$V = \{1, 2, 3, 4\}, \quad E = \{12, 14, 15, 23, 24, 34, 45\}.$$

We can see that G dose not satisfy the conditions of Theorem 3 with one edge less than $\lfloor (n-1)^2/2 \rfloor$ and there are not co-adjacent vertices. This shows that the bound given in Theorem 3 is sharp.

2. The Main Results

This section is concerned with the main theorem of the paper. Some new results are also presented.

Theorem 2.1. Let G be a graph with $|E| = m \ge \lfloor (n-1)^2/2 \rfloor$. Then |Aut(G)| > 1 and |Aut(G)| is even number.

Proof. Suppose $|E| \ge \lfloor (n-1)^2/2 \rfloor$. Then by Theorem 3, there are two vertices x, y such that x, y are co-adjacent and by Theorem 1, we can conclude that 2||Aut(G)|, proving the theorem.

Theorem 2.2. Let G = (V, E) be a graph and $A, B \subseteq V(G)$ such that every two member of A or B are co-adjacent. Then Aut(G) contains a subgroup of order |A|!|B|!.

Proof. Suppose $G_A = \{f \in Aut(G) | f(x) = x, \forall x \notin A\}$ and $G_B = \{f \in Aut(G) | f(x) = x, \forall x \notin B\}$. We can see that G_A and G_B are subgroups of Aut(G) such that $G_A \cong S_{|A|}$ and $G_B \cong S_{|B|}$. Notice that if $f \in G_A$ and $g \in G_B$ then f, g are disjoint permutation and fg = gf. Thus $G_A G_B = G_B G_A$ and so $G_A G_B$ is a subgroup of Aut(G). Since $|G_A| = |A|!, |G_B| = |B|!$ and $G_A \cap G_B = \{e\}, |G_A G_B| = |G_A||G_B| = |A|!|B|!$.

Theorem 2.3. Let G = (V, E) be a graph, $A, B \subseteq V$, $|V| = A \cup B$ and $deg(a) \neq deg(b)$, for all $a \in A, b \in B$. Then $Aut(G) \cong S_{|A|} \times S_{|B|}$.

Proof. By Theorem 5, $G_A G_B \leq Aut(G)$. Since $deg(a) \neq deg(b)$, $a \in A$ is not commute with $b \in B$. This means that $Aut(G) = G_A G_B$. By Theorem 5, |Aut(G)| = |A|!|B|! and $G_A \cap G_B = \{e\}$. Hence $G_A, G_B \leq Aut(G)$ and $Aut(G) \cong G_A \times G_B$. Obviously, $G_A \cong S_{|A|}, G_B \cong S_{|B|}$ and so $Aut(G) \cong S_{|A|} \times S_{|B|}$.

Corollary 2.4. Suppose $n_i \neq n_j$, where i, j are distinct. Then

$$Aut(K_{n_1,n_2,n_3}) \cong S_{n_1} \times S_{n_2} \times S_{n_3}.$$

Proof. Suppose A, B and C are the part of K_{n_1,n_2,n_3} containing n_1, n_2 and n_3 vertices, respectively. Apply Theorem 6. One can see that elements of A, B and C have degree $n_1 + n_2, n_1 + n_3$ and $n_2 + n_3$, as desired.

Theorem 2.5. Suppose $G_i, i = 1, 2$ are (n, m_i) -graph with $m_1 = C(n, 2) - 1$ and $m_2 = C(n, 2) - 2$. Then a) $Aut(G_1) \cong Z_2 \times S_{n-2}$.

b) $Aut(G_2) \cong Z_2 \times S_{n-3} \text{ or } Aut(G_2) \cong D_4 \times S_{n-4}.$

Proof. a) Suppose A and B are subsets with two and n-2 elements of V(G), where elements of A have degree n-2 and elements of B have degree n-1. Thus elements of A are co-adjacent and the same are true for elements of B. We now apply Theorem 6 to prove $Aut(G_1) \cong Z_2 \times S_{n-2}$.

b) By omitting two edges from the complete graph K_n , one can prove there are four vertices of degree n-2 or two vertices with degree n-2 and one vertex of degree n-3. Thus by Theorem 6, in the first case A contains two element of degree two and B contains n-3 elements of degree n-1. Thus $Aut(G_2) \cong Z_2 \times S_{n-3}$. In the second part one can see that there are four vertices of degree n-2 and n-4 vertices of degree n-1. By omitting this n-4 vertices, we obtain the cycle graph C_4 , where $Aut(C_4) \cong D_4$. A similar argument shows that $Aut(G_2) \cong D_4 \times S_{n-4}$.

Theorem 2.6. Suppose G_1 and G_2 are two graphs. If $H_1 \leq Aut(G_1)$ and $H_2 \leq Aut(G_2)$ then $H_1 \times H_2 \leq Aut(G_1 + G_2)$. Also, if $|d(x_i) - d(y_j)| \neq |n_1 - n_2|, i = 1, 2, ..., n_1$ and $j = 1, 2, ..., n_2$ then

$$Aut(G_1 + G_2) \cong Aut(G_1) \times Aut(G_2)$$

Proof. Let $H_1 \leq Aut(G_1)$ and $H_2 \leq Aut(G_2)$. Then it is obvious that $H_1 \times H_2 \leq Aut(G_1 + G_2)$. For proving the second part of the theorem, we assume that $H_1 = Aut(G_1)$ and $H_2 = Aut(G_2)$. Then $Aut(G_1) \times Aut(G_2) \leq Aut(G_1 + G_2)$. Suppose $f(x_i) = y_j$. Then $d(x_i) + n_2 = d(y_j) + n_1$ and so $d(x_i) - d(y_j) = n_1 - n_2$. This implies that $|d(x_i) - d(y_j)| = |n_1 - n_2|$, a contradiction. Thus vertices of G_1 and G_2 cannot interchange to each other and so $|Aut(G_1 + G_2)| = |Aut(G_1)||Aut(G_2)|$. Hence $Aut(G_1 + G_2) \cong Aut(G_1) \times Aut(G_2)$.

In the end of this paper, we compute the automorphism groups of the complete bipartite graph $K_{m,n}$ and a summation of complete bipartite graphs. To do this, we notice that $K_{m,n} = \bar{K}_m + \bar{K}_n$.

Corollary 2.7. Suppose $m = m_1 + m_2$, $m' = m'_1 + m'_2$ and $|m_i - m_j| \neq |m - m'|$. Then $Aut(K_{m_1m_2} + K_{m'_1m'_2}) \cong Aut(K_{m_1m_2}) \times Aut(K_{m'_1m'_2})$. In particular if $m_1 \neq m_2$, $m'_1 \neq m'_2$ then $Aut(K_{m_1m_2} + K_{m'_1m'_2}) \cong S_{m_1} \times S_{m_2} \times S_{m'_1} \times S_{m'_2}$.

Proof. Apply Theorems 6 and 7.

Acknowledgement. The work of the author was supported in part by a grant from the Center of Excellence of Algebraic Methods and Applications of the Isfahan University of Technology.

32

References

- [1] N. Biggs, Algebraic Graph theory, Cambridge Univ. Press, Cambridge, 1993.
- [2] P. J. Cameron, *Atomorphism of graphs*, University of london, Queen Marry, Draft, April 2001.
- [3] N. C. Wormald, Models of random regular graphs, in: Surveys in combinatorics, (ed. J.D. Lamb. and D.A. Preece), London Math. Soc, Lecture Notes Series 267, Cambridge University Press, Cambridge, (1999), 239-298.