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Abstract. Let G = (V, E) be a simple graph with exactly n vertices and

m edges. The aim of this paper is a new method for investigating non-

triviality of the automorphism group of graphs. To do this, we prove that

if |E| ≥ �(n − 1)2/2� then |Aut(G)| > 1 and |Aut(G)| is even number.
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1. Introduction

Throughout this paper all graphs mentioned are assumed to be finite sim-
ple graph. Let G = (V, E) be a graph of order n with vertex set V (G) =
{v1, v2, ..., vn}, E ⊆ P2(V ) and |E| = m. The automorphism group of a graph
G is denoted by Aut(G).

In [2, 3], the authors proved that the proportion of graphs which have a
non-trivial automorphism group tends to zero as n → ∞. This is true whether
we take labeled or unlabeled graphs. Let G1, G2 be two graphs. Then G1 +G2

is join of G1 and G2 namely every vertex of G1 is join to every vertex of G2.
Let G = (V, E) be a graph with n vertices and x ∈ V (G). We define

Vx = {t ∈ V (G)| xt ∈ E(G)}. If Vx − {y} = Vy − {x} then we call x, y ∈ V (G)
to be co-adjacent.

Theorem 1.1. If G = (V, E) is a finite simple graph with two vertices that
are co-adjacent then 2||Aut(G)| and |Aut(G)| > 1.
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Proof. Let x,y be co-adjacent. Our main proof consider two separate cases:
Case 1. If x, y are not adjacent then Vx = Vy. We now define f : V (G) →

V (G) by f(x) = y, f(y) = x, f(t) = t, for t /∈ {x, y}. Since Vx = Vy, f is an
automorphism. One can see that f �= identity and O(f) = 2. Thus 2||Aut(G)|
and |Aut(G)| > 1.

Case 2. Suppose x, y are adjacent. Then Vx − {y} = Vy − {x} and a similar
argument as Case 1 shows that f : V (G) → V (G) is an isomorphism, where
f(x) = y, f(y) = x and f(t) = t, for t /∈ {x, y}. Therefore 2||Aut(G)|, proving
the theorem. �

Theorem 1.2. Suppose xi, yi, 1 ≤ i ≤ k, are co-adjacent and {xi, yi}
⋂{xj , yj} =

φ, i �= j, then 2k||Aut(G)|.
Proof. By the proof of Theorem 1, (xi, yi) ∈ Aut(G) and (xi, yi)(xj , yj) =
(xj , yj)(xi, yi), because {xi, yi}

⋂{xj , yj} = φ and (xi, yi), (xj , yj) are dis-
joint permutation of order 2. Thus < (x1, y1), (x2, y2), ..., (xk, yk) > = <
(x1, y1) > × < (x2, y2) > ×...× < (xk, yk) > is a subgroup of Aut(G) and
by Lagrange’s theorem O(< (x1, y1), (x2, y2), ..., (xk, yk) >)||Aut(G)|. There-
fore O(< (xi, yi), (xj , yj) >) = O((xi, yi))O((xj , yj)) and hence 2k||Aut(G)|.
�

Example 1.3. Suppose G = (V, E) in which

V = {1, 2, 3, 4}, E = {13, 24, 32, 41, 34}.

Then {1, 2}⋂{3, 4} = φ and so 4 | |Aut(G)|. Thus |Aut(G)| = 4 and Aut(G) ∼=
Z2 × Z2.

Theorem 1.4. Let G be a graph with n vertices. If |E| ≥ 	(n − 1)2/2
 then
there exists a co-adjacent pair (x, y) ∈ V (G).

Proof. Since two vertices with the same degree n − 1 are co-adjacent, so it is
enough to assume that G have at most one vertex of degree n−1. We consider
the following two cases.

Case 1. n is even. Then 	(n − 1)2/2
 = n(n−2)
2 . Since the number of edges

in a n−2-regular graph is n(n−2)
2 , there are at least two co-adjacent vertices of

degree n− 1, whenever |E| > n(n−2)
2 . If |E| = n(n−2)

2 and G is (n− 2)−regular
then every two non-adjacent vertices of degree n − 2 are co-adjacent. If |E| =
n(n−2)

2 and G is not (n − 2)−regular then there exist x, y ∈ V (G) such that
deg(x) = deg(y) = n−2 and x, y are not adjacent. Thus these are co-adjacent.
Otherwise 2|E| ≤ (n − 2)(n − 3) + (n − 2) + (n − 1) < n(n − 2), which is a
contradiction.

Case 2. Suppose n is odd. Then |E| = 	(n − 1)2/2
 = (n−1)2

2 . If there are
two vertices of degree n− 1 then they are co-adjacent, otherwise if G dose not
have one vertex of degree n−1, then a similar argument as above completes the
proof. Suppose there exist one vertex of degree n − 1. Then by omitting this
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vertex G−v has order n−1 and n−1 is even. Since |E(G−v)| ≥ (n−1)(n−3)/2,
a simple argument as Case 1 completes the proof. �

Example 1.5. Suppose G = (V, E), where

V = {1, 2, 3, 4}, E = {12, 14, 15, 23, 24, 34, 45}.
We can see that G dose not satisfy the conditions of Theorem 3 with one edge
less than 	(n − 1)2/2
 and there are not co-adjacent vertices. This shows that
the bound given in Theorem 3 is sharp.

2. The Main Results

This section is concerned with the main theorem of the paper. Some new
results are also presented.

Theorem 2.1. Let G be a graph with |E| = m ≥ 	(n − 1)2/2
. Then
|Aut(G)| > 1 and |Aut(G)| is even number.

Proof. Suppose |E| ≥ 	(n−1)2/2
. Then by Theorem 3, there are two vertices
x, y such that x, y are co-adjacent and by Theorem 1, we can conclude that
2||Aut(G)|, proving the theorem. �

Theorem 2.2. Let G = (V, E) be a graph and A, B ⊆ V (G) such that every
two member of A or B are co-adjacent. Then Aut(G) contains a subgroup of
order |A|!|B|!.
Proof. Suppose GA = {f ∈ Aut(G)|f(x) = x, ∀x /∈ A} and GB = {f ∈
Aut(G)|f(x) = x, ∀x /∈ B}. We can see that GA and GB are subgroups of
Aut(G) such that GA

∼= S|A| and GB
∼= S|B|. Notice that if f ∈ GA and

g ∈ GB then f, g are disjoint permutation and fg = gf . Thus GAGB = GBGA

and so GAGB is a subgroup of Aut(G). Since |GA| = |A|!, |GB| = |B|! and
GA

⋂
GB = {e}, |GAGB| = |GA||GB | = |A|!|B|!. �

Theorem 2.3. Let G = (V, E) be a graph, A, B ⊆ V , |V | = A ∪ B and
deg(a) �= deg(b), for all a ∈ A, b ∈ B. Then Aut(G) ∼= S|A| × S|B|.

Proof. By Theorem 5, GAGB ≤ Aut(G). Since deg(a) �= deg(b), a ∈ A is
not commute with b ∈ B. This means that Aut(G) = GAGB. By Theorem
5, |Aut(G)| = |A|!|B|! and GA

⋂
GB = {e}. Hence GA, GB � Aut(G) and

Aut(G) ∼= GA × GB . Obviously, GA
∼= S|A|, GB

∼= S|B| and so Aut(G) ∼=
S|A| × S|B|. �

Corollary 2.4. Suppose ni �= nj, where i, j are distinct. Then

Aut(Kn1,n2,n3) ∼= Sn1 × Sn2 × Sn3 .

Proof. Suppose A, B and C are the part of Kn1,n2,n3 containing n1, n2 and
n3 vertices, respectively. Apply Theorem 6. One can see that elements of A, B
and C have degree n1 + n2, n1 + n3 and n2 + n3, as desired. �
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Theorem 2.5. Suppose Gi, i = 1, 2 are (n, mi)-graph with m1 = C(n, 2) − 1
and m2 = C(n, 2) − 2. Then

a) Aut(G1) ∼= Z2 × Sn−2.
b)Aut(G2) ∼= Z2 × Sn−3 or Aut(G2) ∼= D4 × Sn−4.

Proof. a) Suppose A and B are subsets with two and n− 2 elements of V (G),
where elements of A have degree n − 2 and elements of B have degree n − 1.
Thus elements of A are co-adjacent and the same are true for elements of B.
We now apply Theorem 6 to prove Aut(G1) ∼= Z2 × Sn−2.

b) By omitting two edges from the complete graph Kn, one can prove there
are four vertices of degree n − 2 or two vertices with degree n − 2 and one
vertex of degree n − 3. Thus by Theorem 6, in the first case A contains two
element of degree two and B contains n − 3 elements of degree n − 1. Thus
Aut(G2) ∼= Z2 × Sn−3. In the second part one can see that there are four
vertices of degree n − 2 and n − 4 vertices of degree n − 1. By omitting this
n − 4 vertices, we obtain the cycle graph C4, where Aut(C4) ∼= D4. A similar
argument shows that Aut(G2) ∼= D4 × Sn−4. �

Theorem 2.6. Suppose G1 and G2 are two graphs. If H1 ≤ Aut(G1) and
H2 ≤ Aut(G2) then H1 × H2 ≤ Aut(G1 + G2). Also, if |d(xi) − d(yj)| �=
|n1 − n2|, i = 1, 2, ..., n1 and j = 1, 2, ..., n2 then

Aut(G1 + G2) ∼= Aut(G1) × Aut(G2)

Proof. Let H1 ≤ Aut(G1) and H2 ≤ Aut(G2). Then it is obvious that
H1 × H2 ≤ Aut(G1 + G2). For proving the second part of the theorem, we
assume that H1 = Aut(G1) and H2 = Aut(G2). Then Aut(G1) × Aut(G2) ≤
Aut(G1 + G2). Suppose f(xi) = yj . Then d(xi) + n2 = d(yj) + n1 and
so d(xi) − d(yj) = n1 − n2. This implies that |d(xi) − d(yj)| = |n1 − n2|, a
contradiction. Thus vertices of G1 and G2 cannot interchange to each other and
so |Aut(G1 + G2)| = |Aut(G1)||Aut(G2)|. Hence Aut(G1 + G2) ∼= Aut(G1) ×
Aut(G2). �

In the end of this paper, we compute the automorphism groups of the com-
plete bipartite graph Km,n and a summation of complete bipartite graphs. To
do this, we notice that Km,n = K̄m + K̄n.

Corollary 2.7. Suppose m = m1+m2, m′ = m′
1+m′

2 and |mi−mj | �= |m−m′|.
Then Aut(Km1m2 + Km′

1m′
2
) ∼= Aut(Km1m2) × Aut(Km′

1m′
2
). In particular if

m1 �= m2, m
′
1 �= m′

2 then Aut(Km1m2 + Km′
1m′

2
) ∼= Sm1 × Sm2 × Sm′

1
× Sm′

2
.

Proof. Apply Theorems 6 and 7. �

Acknowledgement. The work of the author was supported in part by a grant
from the Center of Excellence of Algebraic Methods and Applications of the
Isfahan University of Technology.



THE AUTOMORPHISM GROUP OF FINITE GRAPHS 33

References

[1] N. Biggs, Algebraic Graph theory, Cambridge Univ. Press, Cambridge, 1993.
[2] P. J. Cameron, Atomorphism of graphs, University of london, Queen Marry, Draft, April

2001.
[3] N. C. Wormald, Models of random regular graphs, in: Surveys in combinatorics, (ed.

J.D. Lamb. and D.A. Preece), London Math. Soc, Lecture Notes Series 267, Cambridge
University Press, Cambridge, (1999), 239-298.




