THE AUTOMORPHISM GROUP OF FINITE GRAPHS

G. H. FATH-TABAR
DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, UNIVERSITY OF
KASHAN, KASHAN 87317-51167, IRAN
EMAIL: FATHTABAR@KASHANU.AC.IR

> AbSTRACT. Let $G=(V, E)$ be a simple graph with exactly n vertices and m edges. The aim of this paper is a new method for investigating nontriviality of the automorphism group of graphs. To do this, we prove that if $|E| \geq\left\lfloor(n-1)^{2} / 2\right\rfloor$ then $|\operatorname{Aut}(G)|>1$ and $|A u t(G)|$ is even number.

Keywords and phrases: Finite graph, graph automorphism, bipartite graph.

2000 Mathematics subject classification: Primary 20D45, Secondary 05C25.

1. Introduction

Throughout this paper all graphs mentioned are assumed to be finite simple graph. Let $G=(V, E)$ be a graph of order n with vertex set $V(G)=$ $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}, E \subseteq P_{2}(V)$ and $|E|=m$. The automorphism group of a graph G is denoted by $\operatorname{Aut}(G)$.

In $[2,3]$, the authors proved that the proportion of graphs which have a non-trivial automorphism group tends to zero as $n \rightarrow \infty$. This is true whether we take labeled or unlabeled graphs. Let G_{1}, G_{2} be two graphs. Then $G_{1}+G_{2}$ is join of G_{1} and G_{2} namely every vertex of G_{1} is join to every vertex of G_{2}.

Let $G=(V, E)$ be a graph with n vertices and $x \in V(G)$. We define $V_{x}=\{t \in V(G) \mid x t \in E(G)\}$. If $V_{x}-\{y\}=V_{y}-\{x\}$ then we call $x, y \in V(G)$ to be co-adjacent.

Theorem 1.1. If $G=(V, E)$ is a finite simple graph with two vertices that are co-adjacent then $2 \| \operatorname{Aut}(G) \mid$ and $|\operatorname{Aut}(G)|>1$.

Proof. Let x,y be co-adjacent. Our main proof consider two separate cases:
Case 1. If x, y are not adjacent then $V_{x}=V_{y}$. We now define $f: V(G) \rightarrow$ $V(G)$ by $f(x)=y, f(y)=x, f(t)=t$, for $t \notin\{x, y\}$. Since $V_{x}=V_{y}, f$ is an automorphism. One can see that $f \neq$ identity and $O(f)=2$. Thus $2 \| A u t(G) \mid$ and $|A u t(G)|>1$.

Case 2. Suppose x, y are adjacent. Then $V_{x}-\{y\}=V_{y}-\{x\}$ and a similar argument as Case 1 shows that $f: V(G) \rightarrow V(G)$ is an isomorphism, where $f(x)=y, f(y)=x$ and $f(t)=t$, for $t \notin\{x, y\}$. Therefore $2 \| A u t(G) \mid$, proving the theorem.

Theorem 1.2. Suppose $x_{i}, y_{i}, 1 \leq i \leq k$, are co-adjacent and $\left\{x_{i}, y_{i}\right\} \bigcap\left\{x_{j}, y_{j}\right\}=$ $\phi, i \neq j$, then $2^{k}| | A u t(G) \mid$.

Proof. By the proof of Theorem 1, $\left(x_{i}, y_{i}\right) \in \operatorname{Aut}(G)$ and $\left(x_{i}, y_{i}\right)\left(x_{j}, y_{j}\right)=$ $\left(x_{j}, y_{j}\right)\left(x_{i}, y_{i}\right)$, because $\left\{x_{i}, y_{i}\right\} \bigcap\left\{x_{j}, y_{j}\right\}=\phi$ and $\left(x_{i}, y_{i}\right),\left(x_{j}, y_{j}\right)$ are disjoint permutation of order 2. Thus $<\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{k}, y_{k}\right)>=<$ $\left(x_{1}, y_{1}\right)>\times<\left(x_{2}, y_{2}\right)>\times \ldots \times<\left(x_{k}, y_{k}\right)>$ is a subgroup of Aut (G) and by Lagrange's theorem $O\left(<\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{k}, y_{k}\right)>\right)||A u t(G)|$. Therefore $O\left(<\left(x_{i}, y_{i}\right),\left(x_{j}, y_{j}\right)>\right)=O\left(\left(x_{i}, y_{i}\right)\right) O\left(\left(x_{j}, y_{j}\right)\right)$ and hence $2^{k}| | A u t(G) \mid$.

Example 1.3. Suppose $G=(V, E)$ in which

$$
V=\{1,2,3,4\}, \quad E=\{13,24,32,41,34\}
$$

Then $\{1,2\} \bigcap\{3,4\}=\phi$ and so $4||\operatorname{Aut}(G)|$. Thus $| \operatorname{Aut}(G) \mid=4$ and $\operatorname{Aut}(G) \cong$ $Z_{2} \times Z_{2}$.

Theorem 1.4. Let G be a graph with n vertices. If $|E| \geq\left\lfloor(n-1)^{2} / 2\right\rfloor$ then there exists a co-adjacent pair $(x, y) \in V(G)$.

Proof. Since two vertices with the same degree $n-1$ are co-adjacent, so it is enough to assume that G have at most one vertex of degree $n-1$. We consider the following two cases.

Case 1. n is even. Then $\left\lfloor(n-1)^{2} / 2\right\rfloor=\frac{n(n-2)}{2}$. Since the number of edges in a $n-2$-regular graph is $\frac{n(n-2)}{2}$, there are at least two co-adjacent vertices of degree $n-1$, whenever $|E|>\frac{n(n-2)}{2}$. If $|E|=\frac{n(n-2)}{2}$ and G is $(n-2)$-regular then every two non-adjacent vertices of degree $n-2$ are co-adjacent. If $|E|=$ $\frac{n(n-2)}{2}$ and G is not $(n-2)$-regular then there exist $x, y \in V(G)$ such that $\operatorname{deg}(x)=\operatorname{deg}(y)=n-2$ and x, y are not adjacent. Thus these are co-adjacent. Otherwise $2|E| \leq(n-2)(n-3)+(n-2)+(n-1)<n(n-2)$, which is a contradiction.

Case 2. Suppose n is odd. Then $|E|=\left\lfloor(n-1)^{2} / 2\right\rfloor=\frac{(n-1)^{2}}{2}$. If there are two vertices of degree $n-1$ then they are co-adjacent, otherwise if G dose not have one vertex of degree $n-1$, then a similar argument as above completes the proof. Suppose there exist one vertex of degree $n-1$. Then by omitting this
vertex $G-v$ has order $n-1$ and $n-1$ is even. Since $|E(G-v)| \geq(n-1)(n-3) / 2$, a simple argument as Case 1 completes the proof.

Example 1.5. Suppose $G=(V, E)$, where

$$
V=\{1,2,3,4\}, \quad E=\{12,14,15,23,24,34,45\} .
$$

We can see that G dose not satisfy the conditions of Theorem 3 with one edge less than $\left\lfloor(n-1)^{2} / 2\right\rfloor$ and there are not co-adjacent vertices. This shows that the bound given in Theorem 3 is sharp.

2. The Main Results

This section is concerned with the main theorem of the paper. Some new results are also presented.

Theorem 2.1. Let G be a graph with $|E|=m \geq\left\lfloor(n-1)^{2} / 2\right\rfloor$. Then $|A u t(G)|>1$ and $|A u t(G)|$ is even number.

Proof. Suppose $|E| \geq\left\lfloor(n-1)^{2} / 2\right\rfloor$. Then by Theorem 3 , there are two vertices x, y such that x, y are co-adjacent and by Theorem 1, we can conclude that $2||A u t(G)|$, proving the theorem.

Theorem 2.2. Let $G=(V, E)$ be a graph and $A, B \subseteq V(G)$ such that every two member of A or B are co-adjacent. Then $\operatorname{Aut}(G)$ contains a subgroup of order $|A|!|B|$!.

Proof. Suppose $G_{A}=\{f \in \operatorname{Aut}(G) \mid f(x)=x, \forall x \notin A\}$ and $G_{B}=\{f \in$ $\operatorname{Aut}(G) \mid f(x)=x, \forall x \notin B\}$. We can see that G_{A} and G_{B} are subgroups of Aut (G) such that $G_{A} \cong S_{|A|}$ and $G_{B} \cong S_{|B|}$. Notice that if $f \in G_{A}$ and $g \in G_{B}$ then f, g are disjoint permutation and $f g=g f$. Thus $G_{A} G_{B}=G_{B} G_{A}$ and so $G_{A} G_{B}$ is a subgroup of $\operatorname{Aut}(G)$. Since $\left|G_{A}\right|=|A|!,\left|G_{B}\right|=|B|$! and $G_{A} \bigcap G_{B}=\{e\},\left|G_{A} G_{B}\right|=\left|G_{A}\right|\left|G_{B}\right|=|A|!|B|!$.

Theorem 2.3. Let $G=(V, E)$ be a graph, $A, B \subseteq V,|V|=A \cup B$ and $\operatorname{deg}(a) \neq \operatorname{deg}(b)$, for all $a \in A, b \in B$. Then $\operatorname{Aut}(G) \cong S_{|A|} \times S_{|B|}$.

Proof. By Theorem 5, $G_{A} G_{B} \leq \operatorname{Aut}(G)$. Since $\operatorname{deg}(a) \neq \operatorname{deg}(b), a \in A$ is not commute with $b \in B$. This means that $\operatorname{Aut}(G)=G_{A} G_{B}$. By Theorem $5,|A u t(G)|=|A|!|B|$! and $G_{A} \bigcap G_{B}=\{e\}$. Hence $G_{A}, G_{B} \unlhd A u t(G)$ and $\operatorname{Aut}(G) \cong G_{A} \times G_{B}$. Obviously, $G_{A} \cong S_{|A|}, G_{B} \cong S_{|B|}$ and so $\operatorname{Aut}(G) \cong$ $S_{|A|} \times S_{|B|}$.

Corollary 2.4. Suppose $n_{i} \neq n_{j}$, where i, j are distinct. Then

$$
\operatorname{Aut}\left(K_{n_{1}, n_{2}, n_{3}}\right) \cong S_{n_{1}} \times S_{n_{2}} \times S_{n_{3}}
$$

Proof. Suppose A, B and C are the part of $K_{n_{1}, n_{2}, n_{3}}$ containing n_{1}, n_{2} and n_{3} vertices, respectively. Apply Theorem 6. One can see that elements of A, B and C have degree $n_{1}+n_{2}, n_{1}+n_{3}$ and $n_{2}+n_{3}$, as desired.

Theorem 2.5. Suppose $G_{i}, i=1,2$ are (n, m_{i})-graph with $m_{1}=C(n, 2)-1$ and $m_{2}=C(n, 2)-2$. Then
a) $\operatorname{Aut}\left(G_{1}\right) \cong Z_{2} \times S_{n-2}$.
b) $\operatorname{Aut}\left(G_{2}\right) \cong Z_{2} \times S_{n-3}$ or $\operatorname{Aut}\left(G_{2}\right) \cong D_{4} \times S_{n-4}$.

Proof. a) Suppose A and B are subsets with two and $n-2$ elements of $V(G)$, where elements of A have degree $n-2$ and elements of B have degree $n-1$. Thus elements of A are co-adjacent and the same are true for elements of B. We now apply Theorem 6 to prove $\operatorname{Aut}\left(G_{1}\right) \cong Z_{2} \times S_{n-2}$.
b) By omitting two edges from the complete graph K_{n}, one can prove there are four vertices of degree $n-2$ or two vertices with degree $n-2$ and one vertex of degree $n-3$. Thus by Theorem 6 , in the first case A contains two element of degree two and B contains $n-3$ elements of degree $n-1$. Thus $\operatorname{Aut}\left(G_{2}\right) \cong Z_{2} \times S_{n-3}$. In the second part one can see that there are four vertices of degree $n-2$ and $n-4$ vertices of degree $n-1$. By omitting this $n-4$ vertices, we obtain the cycle graph C_{4}, where $\operatorname{Aut}\left(C_{4}\right) \cong D_{4}$. A similar argument shows that $\operatorname{Aut}\left(G_{2}\right) \cong D_{4} \times S_{n-4}$.

Theorem 2.6. Suppose G_{1} and G_{2} are two graphs. If $H_{1} \leq A u t\left(G_{1}\right)$ and $H_{2} \leq \operatorname{Aut}\left(G_{2}\right)$ then $H_{1} \times H_{2} \leq \operatorname{Aut}\left(G_{1}+G_{2}\right)$. Also, if $\left|d\left(x_{i}\right)-d\left(y_{j}\right)\right| \neq$ $\left|n_{1}-n_{2}\right|, i=1,2, \ldots, n_{1}$ and $j=1,2, \ldots, n_{2}$ then

$$
\operatorname{Aut}\left(G_{1}+G_{2}\right) \cong \operatorname{Aut}\left(G_{1}\right) \times \operatorname{Aut}\left(G_{2}\right)
$$

Proof. Let $H_{1} \leq \operatorname{Aut}\left(G_{1}\right)$ and $H_{2} \leq \operatorname{Aut}\left(G_{2}\right)$. Then it is obvious that $H_{1} \times H_{2} \leq \operatorname{Aut}\left(G_{1}+G_{2}\right)$. For proving the second part of the theorem, we assume that $H_{1}=\operatorname{Aut}\left(G_{1}\right)$ and $H_{2}=\operatorname{Aut}\left(G_{2}\right)$. Then $\operatorname{Aut}\left(G_{1}\right) \times \operatorname{Aut}\left(G_{2}\right) \leq$ $\operatorname{Aut}\left(G_{1}+G_{2}\right)$. Suppose $f\left(x_{i}\right)=y_{j}$. Then $d\left(x_{i}\right)+n_{2}=d\left(y_{j}\right)+n_{1}$ and so $d\left(x_{i}\right)-d\left(y_{j}\right)=n_{1}-n_{2}$. This implies that $\left|d\left(x_{i}\right)-d\left(y_{j}\right)\right|=\left|n_{1}-n_{2}\right|$, a contradiction. Thus vertices of G_{1} and G_{2} cannot interchange to each other and so $\left|\operatorname{Aut}\left(G_{1}+G_{2}\right)\right|=\left|\operatorname{Aut}\left(G_{1}\right)\right|\left|\operatorname{Aut}\left(G_{2}\right)\right|$. Hence $\operatorname{Aut}\left(G_{1}+G_{2}\right) \cong \operatorname{Aut}\left(G_{1}\right) \times$ $\operatorname{Aut}\left(G_{2}\right)$.

In the end of this paper, we compute the automorphism groups of the complete bipartite graph $K_{m, n}$ and a summation of complete bipartite graphs. To do this, we notice that $K_{m, n}=\bar{K}_{m}+\bar{K}_{n}$.

Corollary 2.7. Suppose $m=m_{1}+m_{2}$, $m^{\prime}=m_{1}^{\prime}+m_{2}^{\prime}$ and $\left|m_{i}-m_{j}\right| \neq\left|m-m^{\prime}\right|$. Then $\operatorname{Aut}\left(K_{m_{1} m_{2}}+K_{m_{1}^{\prime} m_{2}^{\prime}}\right) \cong \operatorname{Aut}\left(K_{m_{1} m_{2}}\right) \times \operatorname{Aut}\left(K_{m_{1}^{\prime} m_{2}^{\prime}}\right)$. In particular if $m_{1} \neq m_{2}, m_{1}^{\prime} \neq m_{2}^{\prime}$ then $\operatorname{Aut}\left(K_{m_{1} m_{2}}+K_{m_{1}^{\prime} m_{2}^{\prime}}\right) \cong S_{m_{1}} \times S_{m_{2}} \times S_{m_{1}^{\prime}} \times S_{m_{2}^{\prime}}$.
Proof. Apply Theorems 6 and 7.
Acknowledgement. The work of the author was supported in part by a grant from the Center of Excellence of Algebraic Methods and Applications of the Isfahan University of Technology.

REFERENCES

[1] N. Biggs, Algebraic Graph theory, Cambridge Univ. Press, Cambridge, 1993.
[2] P. J. Cameron, Atomorphism of graphs, University of london, Queen Marry, Draft, April 2001.
[3] N. C. Wormald, Models of random regular graphs, in: Surveys in combinatorics, (ed. J.D. Lamb. and D.A. Preece), London Math. Soc, Lecture Notes Series 267, Cambridge University Press, Cambridge, (1999), 239-298.

